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ABSTRACT: Materials exhibiting persistent spectral hole-burning via a gated mechanism are
promising candidates for the development of frequency domain optical storage with storage
densities beyond 10° bits/cm2. Gated hole-burning requires a secondary gating field for
writing, permitting nondestructive reading in the absence of this field. Properties of gated
hole-burning materials suited for a practical storage system are analyzed with particular
attention to the required values of absorption cross section, density of centers, and effective
hole-burning yield. The results permit evaluation of the usefulness of particular gated
hole-burning materials for storage applications. Some general guidelines for photon-gated
mechanisms using three-level and four-level systems are presented.
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I. Introduction

The phenomenon of persistent spectral hole burning (PHB) permits use of the optical
frequency for encoding digital data in a storage scheme called frequency domain optical storage
(1] [2] [3] . A suitable storage material, which is kept at low (liquid helium) temperatures,
contains optically active centers that exhibit an inhomogeneously broadened absorption line
resulting from strain-induced frequency shifts of the atomic or molecular resonance. With a
narrow-bandwidth tunable laser, specific frequency locations within the absorption line can be
addressed by selective excitation of those centers that are resonant with the laser frequency.
When the optical excitation is accompanied by a photochemical or photophysical process that
induces a persistent population reduction of the selected centers, multiple spectral holes can
be burned in the absorption line. The presence or absence of a spectral holes at given frequency
locations can be used to represent binary data. The ratio of inhomogeneous to homogeneous
linewidth, Aw;/Awy, which can be as high as 103 - 10 4, approximately determines the storage
capacity of the frequency domain. Storage densities of 109 - 1010 bits/cm? or even higher

should be possible using tightly focused laser beams.

In most PHB materials investigated the photo-induced changes in the absorbing centers
involve a single-photon process. Excessive photoreaction during the detection of spectral holes
can only be avoided by using much lower light intensities than for hole burning. In optical
storage applications, however, significant photo-induced bleaching during data interrogation
would accumulate after a large number of reads and eventually the read signal-to-noise would
degrade below tolerable levels. Recent modeling studies have addressed in detail the liinited
usefulness of single-photon hole burning mechanisms for a frequency-domain storage
configuration{4]. However, non-destructive hole detection is possible if hole burning occurs

via a gated mechanism that, in addition to optical excitation, requires a "gating" event to
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initiate the reaction process leading to the formation of a persistent spectral hole. Such a

gating event could be triggered by an electrical field, microwave radiation, or a second optical
photon. Three experimental examples of gated spectral hole burning by two-step
photoionization have been reported recently [5] [6] [7] . A first photon is used for
frequency-selective excitation within the inhomogeneously broadened absorption line; the

absorption of a second photon by the excited state results in photoionization and hole burning.

The general mechanism of gated PHB has been demonstrated but several materials
properties await optimization before a practical storage system can be realized. The search for
a suitable storage medium that fulfills all technological requirements presents a challenging
task for solid-state materials research. The complex nature of gated PHB processes make a
systematic approach for finding a satisfactory material rather difficult. In this paper we

analyze desirable properties of gated PHB materials for optical storage applications.

IL Analysis of Gated Hole-Burning Materials

In order to identify the critical properties of 2 suitable storage medium, one has to make
some assumptions about the performance characteristics of a frequency domain optical storage
system. We will follow the considerations of Ref [4], which contains a modeling study of such
a system based upon single-photon PHB. A key performance parameter is the required data
transfer rate. To be competitive with presently developed magnetic and optical disk storage
systems we assume a read/write data rate of 30 ns per bit and shot-noise-limited reading with
at least 26 dB wideband signal-to-noise ratio. Further, the medium area accessed by the laser
beam must be small. A 10um diameter laser spot corresponds to 10¢ spatial locations per
square centimeter, which, with the use of the frequency domain, yields an attractive total

9
storage density of 10" - 10lo bits/cm2. The photodetector is characterized by its quantum
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spectral holes, each of which represents a characteristic absorption change Aa, where t::%:
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a = 01N, is the absorption coefficient. Here, o, is the low temperature absorption cross fi}:z_
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For data readout it is essential to discriminate between the optical transmission associated
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with a spectral hole and the original lower transmission characterizing the absence of a hole. el
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Egs. (1) and (2) define the achievable signal-to-noise (voltage) ratio, S/N. We take S/N = .Q:.::
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o
20 (or 26dB) in a read time of 30 ns as the minimum value required for a practical storage N
S
system. Most of the parameters in Egs. (1) and (2) are determined by the storage material :;'::-';:
NN
Ak
itself. Thus, Egs. (1) and (2) can be used to identify suitable combinations of material [
; :):f:‘
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parameters so that S/N > 20. oo
A
¢ S
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‘,;: In principle, the signal-to-noise ratio can be improved by increasing the read power. ;_.j:
‘P :-" e
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';: readout. The maximum usable read power is either determined by the specific laser device SRS
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;{f holes, including the effective laser linewidth, the Fourier transform width of the 30 ns writing ::.::*
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; and reading pulses, power broadening, the upper state lifetime T;, and the dephasing time T,. \‘;\i
N7 A detailed consideration of all these effects is beyond of the scope of this paper. Certainly, :::t':::'.
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-h: materials with T; and T, much shorter than T, are undesirable since the associated fast RSN
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é relaxation would lead to inappropriately wide spectral holes that waste frequency space. In e (
:" order to rule out excessive power broadening during readout, we choose a phenomenological
N
-,' limit on the laser power focused on the storage medium: P < 2Afiw/g 7R, where A = 7.9 x
I,-
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10 cm? is the laser beam area corresponding to a beam diameter of 10um. It is worth v
:::: mentioning that the maximum practical hole width is ultimately limited by the requirement . .
::: for sufficient storage capacity in the frequency domain. In materials with very large ::‘:-f :
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h N, L, and n which result in S/N > 20 (compare Egs. (1), (2)). The thickness L of the o l
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storage material and the concentration N, of the active centers are not intrinsic material
3 properties and can be controlled when fabricating the storage medium. Thus, it is meaningful
N
l to classify materials by a concentration-thickness product N L. However, well-defined spatial s
Y
d I
- resolution is required when accessing the stored information with the laser beam. Therefore, .';:::?
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. the material thickness L should not exceed the depth of field (as given by the Rayleigh range) ’.:::‘_:"
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L associated with the focused laser beam of 10um diameter, i.e. L € 100um. Cross sections of
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2: optical transitions are known for many materials or can easily be estimated and measured.
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concentration of centers; this limit is highly material dependent. With a maximum material
. . - .. 16 -2 .
thickness of L = 100pm, N_L is ultimately limited to ~ 10 cm since the corresponding
total concentration of centers N  approaches the density limit of solid-state materials. In the
tot

fabrication of materials containing optically active centers it is usually not a problem to choose

B Lo C TPl T LAY P PP

very low concentrations. However, in many cases high concentrations of centers are difficult

to prepare or are intolerable for physical reasons. The right axis of Figure 1 gives the center

MUY}

LSRN

L

concentration N, under the assumption that the maximum media thickness L = 100 um is

used. The results of the present analysis clearly show that a suitable PHB material has to

445518

. . . 13 -3 .
contain a center concentration in excess of 10~ c¢m . In case of gated PHB, the achievable

o

o yield n depends through complex relationships on the microscopic processes involved in the
[

)

:‘f photo-induced material transformation as well as the amount of write power available for the

~

g frequency selective excitation and the subsequent gating process. However, spectral

broadening of the produced hole, either by saturation of the transition or by excessive hole

AT

2

burning, imposes a limit on yield 5 . For this analysis, it seems justified to restrict the hole
€

N e )
PP A

burning yield ton < 0.1. The o; — N_L parameter space shrinks rapidly as 7 decreases. In
[ [

-
»

order to successfully implement a frequency domain optical storage system based on gated

R

g
.

mechanisms, it is critical to find a material that permits gated PHB with very high efficiency

in the short writing times required for fast data transfer rates.

K Ay

;.}_ Figure 2 provides a somewhat different view by classifying suitable PHB materials through
:: a plot of effective yield n, versus Cross section o, using N_L as a parameter. Here a given

;: material has an optimum value of n and a particular value of ,, which defines a point in the
"

ES - oy plane. The contours show the required value of N L that must be achieved in order

e

to obtain reading S/N > 20. Outside the allowed regions, various physical considerations

prevent a solution to the materials optimization problem. At the top of the figure, holes would

%

s
ry

[
N
~
~

be expected to broaden unacceptably due to excessive photochemistry. At the lower left,
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values of N_L are required that are so large as to produce intercenter interactions such as
spectral diffusion. Finally, at the lower right the required reading powers are large enough for

saturation power broadening.

. . . . . -11
The lowest reading power included in Figures 1 and 2 is used for ¢; = 10 cm?2.

Saturation broadening limits the read power for this cross section to

s

M

P < 2Afw/o TR = 1.3uW. It is important to mention that such low reading power can be

A
sufficient to obtain shot noise limited detection with S/N > 20 with state-of-the-art high PO
| P
. . . . . . -13 RSO
bandwidth photodiodes. Typical noise equivalent input powers of such devices are 10 -:‘_.:_}::
-\‘-.‘1‘"
RN
W/vHz corresponding to 0.41 nW for 30 ns reading time. \"\}.
e
.‘ -l
Based on a straightforward signal-to-noise analysis for data readout, key properties of PSS
-.I-.‘b-‘
Y
gated PHB materials suitable for optical storage applications have been identified in Figures \~ ’
T

(1) and (2). No specific assumptions on technological details of the storage system were made

with the exception of requiring a fast data rate of approximately 30 ns/bit with read S/N 2>

N ey

Sl

20 and a laser focus of 10 um diameter for defining the saturation power. The analysis focused

(5.5

on the reading part of the problem, with all details of the writing process included in the | A
RN
effective yield, n . RO
e e
AT
.d.- .l'
AN

III. Photon-Gated Hole-Burning

»
' .

iy
AR

-
T

ARy

To date, gated PHB has been observed in three materials: Sm2+: BaCIF (5], Sm2+: CaF, y
[7], and carbazole in boric acid glass{6]. In these examples, the gating mechanism involves
absorption of a second photon, hence the name, "photon-gated". Photon-gated PHB is
attractive for optical storage applications since there are no fundamental technical barriers for
implementing such a process in the design of a practical device. Figures 3 and 4 illustrate some

general aspects of photon-gated PHB mechanisms. In the case of a three level system (Fig. 3)

PR AR LW M) e T e s h el -\.'1
AR I N AN SN S S A AL R NN




the absorption of a photon with energy #iw, results in frequency selective excitation of level

2. The level 2 lifetime r should not be so short as to produce unacceptably broad holes.

.
IS
LAY :" :'.‘-" )

acs

Absorption of 2 second photon of energy fiw, excites the center to level(s) 3. From level 3 the

[ 4

photoreaction occurs with microscopic quantum efficiency 75, reducing the population of .

V.f‘:l
A
p “":Ar‘l

2+
centers that are resonant at ;. This is the general level scheme for the system Sm : BaCIF,

in which N_L~1014cm~2 and ¢; ~ 10" cm2. Note that the effective hole burning yield 4
[

.l
.

" .'
P

P

b 3

-

A
[REN

used in the signal-to-noise analysis above depends on the absorption cross sections o; and o;

as well as on the microscopic reaction efficiency % (compare Fig. 3). There is no fundamental
need for a frequency-selective narrow band transition from level 2 to level 3. When the

N excitation energy fiw, exceeds a certain threshold value, the photoreaction is initiated, causing
N the formation of a persistent spectral hole. In cases where the lifetime r of level 2 is much

- larger than the data access time ™ the storage material does not have to be exposed with both

photon energies simultaneously. By rapid variation of %w, selected centers can be excited to

. 2

. 3 » - - 3 - - ».-.-'.lwq
" level 2 with characteristic lifetime r. After a time period shorter than or comparable to 1, s
: o . . . . RSN
- irradiation with fiw; induces the photoreaction. The exposure time of this second step can be -_.::_\‘
v YA A

rather long without loss of writing speed.

.
N e

In principle, systems with w; = w; can exhibit gated PHB in the sense that the hole burning
yield is nonlinear with laser intensity. However, the requirement of non-destructive reading e 5O

makes it desirable to use systems with w; # «, permitting complete decoupling of reading and

writing processes. For efficient gated hole burning it is advantageous to choose centers where A

.
- w is not absorbed from the excited state 2 (region a) and where w, does not cause excitations E:;
\ from the ground state (region b). Suitable values for ¢; have been determined by the analysis S:_\:::::'
in Section II. The cross section o, should certainly be large to assure efficient utilization of }: =

N

the available gating light and permit high hole-burning yield n . Thus in certain instances,
[
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narrow band levels 3 involving transitions with high peak cross sections may be preferable to >3

a continuum such as a conduction band. Ao

A

Figure 4 illustrates photon-gated PHB involving a 4-level system. This type of level

Yy

ey

’ ]
Ry

scheme is appropriate for organic molecules or color centers that have states with different

"

"'(‘..

-

spin multiplicity. For the case of carbazole in boric acid glass, N L = 1013 cm=2 and

0, = 5x10~12 cm?. After the initial frequency selective excitation 1 -> 2, the system relaxes

to the intermediate state i by intersystem crossing, for example. Subsequent absorption of a

second photon by the i -> 3 transition induces persistent spectral hole burning. For efficient 2 -

gated PHB the 2 -> i relaxation rate I should be as large as possible consistent with the

-~ i e

. A
A requirement that the lifetime of level 2 not be too short. Further, a long intermediate state -
3 e
Ny lifetime * would be advantageous in achieving a large population in level i for excitation to e
R i T,
_‘4 :-.':.-
- level 3. It is evident that absorptions 2 -> (a), 1 -> (b), and i -> (c) involving photons of e
N o

frequency wy, wy, and w,, respectively, should not be large (compare Fig. 3). Of course, the

microscopic yield n should be as large as possible for efficient photon gating.

A further constraint for promising materials might be the availability of practical light
sources to provide the needed frequencies w, and «,. A narrow linewidth, rapidly tunable laser e
such as a GaAlAs or other semiconductor diode laser is essential for frequency selective
excitation at w;. The much less stringent requirements for the gating light can, in principle, """T
permit use of incoherent sources such as (flash) lamps, light emitting diodes, or super

luminescent diodes.

ol
- A
¥ 2
:'.: None of the recently discovered materials that exhibit photon-gated PHB fulfill all the o
. R
. requirements for a successful frequency domain optical storage medium. A final evaluation
(3%
* srl- - .
of these materials will require determination of the hole-burning yield y that can be achieved ";
e (e
A
during the 30 ns writing time. Independent of the yield 5 , the low cross section and limited :‘;'.:'

¢ >
F:i
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. -10-
g . 2+, ) .
N concentration of Sm  in BaCIF would require very high read powers on the order of 1 W to
. q
o
K achieve S/N > 20. For the material composed of carbazole in boric acid glass, practical
p g
::."; tunable lasers in the near ultraviolet would be needed.
::l g
" o~
& r:-l,;
A £
' IV. Conclusions .
'_:-‘ N
N N
- RS s:_ y
;2 In conclusion, several guidelines in the search for gated PHB materials suited for frequency e
RN GGy
Ll %
e domain optical data storage have been established by identifying appropriate values for ikt
:: important material properties such as concentration of active centers, absorption cross section, ::'.:':I“

L
o"n
5 f
P
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and effective hole-burning yield. The results of this analysis permit evaluation of the

P
o

-
I
LAR
-

L)
I{ k
N

i

suitability of newly discovered materials exhibiting gated PHB. The specific case of gated PHB

G '~
-~ >,
N involving a photon-induced gating mechanism has been discussed and desirable properties of .‘-
' - ~ g
&Y d
N two types of photon-gated mechanisms have been described. Innovation in the development -l
f', X
A of gated PHB materials will be crucial for the design of a practical high-density storage system i;--‘_',:-}
L W
- A
o based upon persistent spectral hole burning. ,":'-,‘f-:'
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Figure 3.

General level structure of a three-level photon-gated PHB mechanism. The absorption should
be small in the regions labeled (a) and (b).
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